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Abstract
Traffic congestion event prediction is an important yet
challenging task in intelligent transportation systems.
Many existing works about traffic prediction integrate
various temporal encoders and graph convolution net-
works (GCNs), called spatio-temporal graph-based neu-
ral networks, which focus on predicting dense variables
such as flow, speed and demand in time snapshots, but
they can hardly forecast the traffic congestion events
that are sparsely distributed on the continuous time axis.
In recent years, neural point process (NPP) has emerged
as an appropriate framework for event prediction in
continuous time scenarios. However, most conventional
works about NPP cannot model the complex spatio-
temporal dependencies and congestion evolution pat-
terns. To address these limitations, we propose a spatio-
temporal graph neural point process framework, named
STGNPP for traffic congestion event prediction. Specif-
ically, we first design the spatio-temporal graph learning
module to fully capture the long-range spatio-temporal
dependencies from the historical traffic state data along
with the road network. The extracted spatio-temporal
hidden representation and congestion event informa-
tion are then fed into a continuous gated recurrent unit
to model the congestion evolution patterns. In partic-
ular, to fully exploit the periodic information, we also
improve the intensity function calculation of the point
process with a periodic gated mechanism. Finally, our
model simultaneously predicts the occurrence time and
duration of the next congestion. Extensive experiments
on two real-world datasets demonstrate that our method
achieves superior performance in comparison to exist-
ing state-of-the-art approaches.

Introduction
Traffic congestion is one of the most serious problems in ur-
ban management, which is associated with more than 60%
world-wide traffic accidents (Jain, Sharma, and Subrama-
nian 2012). Since traffic congestion is a continuous process
from generation to dissipation, each individual congestion
event can be defined by two core elements: occurrence time
and duration. Therefore, it is meaningful to predict when the
next congestion event will occur and how long it will last for
improving the traffic management and scheduling.
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Figure 1: Example of the traffic congestion features and link
speed trends from the Beijing dataset we adopted in this pa-
per. In sub-figure (a), we select the traffic congestion statis-
tics of three neighbor links (link 1 and link 3 are both adja-
cent to link 2) on 12 May 2021 to visualize the occurrence
time and duration of traffic congestion in 24 hours. In sub-
figure (b), we select the speed of link 1 from 7.am to 10.am
on 12 May 2021 to visualize the change trend.

In recent years, many works have made some break-
throughs in intelligent transportation, especially the traffic
flow prediction (Yu, Yin, and Zhu 2018; Li et al. 2018; Wu
et al. 2019; Fang et al. 2021; Song et al. 2020; Zheng et al.
2020; Li and Zhu 2021). Most of these works adopt the ar-
chitecture of spatio-temporal graph-based neural networks
to capture the spatio-temporal correlations, and predict the
states of links in future time slots by the homogeneous fea-
tures in historical regular sequential time slots. Although this
framework can fully exploit the spatio-temporal information
to improve prediction, it is difficult to handle the traffic con-
gestion event prediction task. There are at least two disad-
vantages in predicting congestion event: 1) The traditional
traffic prediction framework only model dense variables on
the road such as speed, not sparse ones such as congestion
events. 2) Most traditional traffic prediction framework (Jin
et al. 2022; Yu, Yin, and Zhu 2018; Wu et al. 2019; Jin et al.
2020; Fang et al. 2021; Song et al. 2020; Li and Zhu 2021;
Wang, Zhang, and Tsui 2021; Jin et al. 2021) can only sup-
port the prediction in the given future time window (e.g., the
next one hour), which is difficult to flexibly predict conges-
tion occurring in arbitrary time intervals.

Neural point process is an appropriate framework
for sparse event prediction in continuous-time scenar-
ios (Shchur et al. 2021). However, this framework is still
difficult to be adopted in traffic congestion event prediction
directly. There are still two challenges as follows: 1) How to
effectively capture the spatio-temporal dependencies in
road networks? The traffic congestion can propagate in the
spatial scale over time, thus each link could be affected by



the links to which they are adjacent. The periodic informa-
tion could also bring significant impacts on the occurrence
pattern of traffic congestion. For example, during the peak
hours (e.g., 7.am∼ 9.am, 5.pm∼ 7.pm), congestion occurs
more frequently, but less frequently during other periods. As
shown in Fig. 1(a), the congestion frequency is higher during
peak hours, and the patterns of occurrence time and duration
of traffic congestion on adjacent links are similar. However,
most previous works about neural point process (Mei and
Eisner 2017; Du et al. 2016; Zuo et al. 2020; Zhang et al.
2020; Omi, Aihara et al. 2019; Xiao et al. 2019) have not
fully captured spatio-temporal information for traffic con-
gestion prediction. 2) How to effectively model the con-
tinuous and instantaneous temporal dynamics simulta-
neously for each road? The trend of the road states (e.g.,
speed) is a hybrid mode with continuous and instantaneous
changes. When there is no congestion, the road states change
gently, but when the congestion occurs, the road conditions
could change instantaneously, as shown in Fig. 1(b). This
makes the congestion prediction greatly different from some
other event forecasting such as StackOverflow, 911 Calls
and Electrical Medical Records in previous works (Du et al.
2016; Zuo et al. 2020; Xiao et al. 2019), because these events
are completely discrete, they do not have the continuously
dynamics characteristics similar to road conditions.

To address the problems above, we propose a novel
model named Spatio-Temporal Graph Neural Point Process
(STGNPP) for traffic congestion event prediction. To be spe-
cific, we introduce Transformer and Graph Convolution Net-
work (GCN) to jointly capture the spatio-temporal depen-
dencies from traffic states data. Then we extract the con-
textual link representations to incorporate with congestion
event information for modeling the history of the point pro-
cess. To encode the hidden evolution patterns of each road,
we present a novel continuous Gated Recurrent Unit (GRU)
layer with neural flow architecture. In addition, considering
the effect of periodic patterns on congestion events, we pro-
pose a fully connected network with periodic gated mech-
anism to calculate the intensity function of the point pro-
cess. Based on the learned intensity function, we compute
the likelihood function of traffic congestion events to sup-
port the next prediction. Our main contributions in this paper
are summarized as follows:

• To the best of our knowledge, it is the first work to pro-
pose spatio-temporal graph neural point process for traffic
congestion event prediction. In particular, our model can
simultaneously predict when the next traffic congestion
will happen and how long it will last.

• We take account into the continuous and instantaneous
dynamics in road networks, thus propose continuous GRU
to model the sequential congestion events. And we also
improve the calculation of intensity function by involving
the periodic information.

• We conduct extensive experiments on two real-world traf-
fic datasets. The experimental results demonstrates that
our proposed model significantly outperforms than other
methods. In addition, we also perform the case studies to
further demonstrate the practical value of our model.

Related Works
Traffic Prediction
In recent years, many deep learning algorithms based on
spatio-temporal graph modeling have been widely intro-
duced in traffic prediction. Most of them integrated vari-
ous spatial graph convolution networks (GCNs) and tempo-
ral learning modules to extract the complex spatio-temporal
dependencies from the structural data. STGCN (Yu, Yin,
and Zhu 2018) is the first work to combine the GCN with
1D CNN for spatio-temporal learning. ASTGCN (Guo et al.
2019) involved the attention mechanism based on STGCN.
Both DCRNN (Li et al. 2018) and T-GCN (Zhao et al. 2019)
integrated the gated recurrent unit (GRU) and GCN for traf-
fic prediction. To capture long-range temporal dependen-
cies, both STGNN (Wang et al. 2020) and GMAN (Zheng
et al. 2020) employed self-attention mechanism. Graph
WaveNet (Wu et al. 2019), AGRNN (Bai et al. 2020) and
DMSTGNN (Han et al. 2021) proposed adaptive graph con-
volution to enhance the spatial representation from the pre-
defined graphs. To capture the continuous spatio-temporal
dynamics, STGODE (Fang et al. 2021) first combined the
neural ODE with the normal GCN. However, most previous
works about traffic prediction can only predict the sequen-
tial data in regular time snapshots and fixed-length time win-
dow. This framework is hard to be directly adopted in traffic
congestion prediction because congestion may be absent or
sparsely distributed over a fixed-length time window.

Neural Point Process
Neural point process has been widely applied in event fore-
casting of different domains such as electronic medical
records (Enguehard et al. 2020), social web (Okawa et al.
2019; Zhang, Lipani, and Yilmaz 2021) and mobility (Wu,
Cheng, and Sun 2021; Zhu et al. 2021a). RMTPP (Du et al.
2016) first adopted RNN to encode the historical sequential
events to obtain the intensity function. Mei et al. (Mei and
Eisner 2017) proposed an exponential decay based contin-
uous LSTM to model the event sequences. Zuo et al. (Zuo
et al. 2020) introduced Transformer as the encoder for long-
term sequential event learning. To address calculation of in-
tegral term for likelihood optimization, Omi et al. (Omi, Ai-
hara et al. 2019) proposed to model the cumulative inten-
sity function. However, these previous works only focus on
the temporal point process. To consider the spatio-temporal
dynamics, a few spatio-temporal neural point process mod-
els (Zhu et al. 2021b; Zhou et al. 2021; Chen, Amos, and
Nickel 2020) have been proposed in recent years. However,
these works can only handle the applications in the spatio-
temporal continuous scenarios, which can not be introduced
into the traffic congestion event prediction because the traf-
fic networks are discrete in the spatial scale.

Preliminaries
Task Definition
Given a road network with N links V (|V | = N), it can
be defined as a graph G = (V,E,A). E denotes the set of
edges, whose connections between different links are char-
acterized by the adjacency matrix A. The traffic states Xn



(eg., link speed) on each link Vn are dense features in the
snapshots of certain time granularity. The sequential con-
gestion events on each link Vn can be defined as a finite set
Sn = {sn,i}(i = 1, 2, . . . , |Sn|), where |Sn| denotes the
length of the set. In this paper, each congestion event can
be defined as a two-element tuple sn,i = ⟨tn,i, dn,i⟩, where
tn,i and dn,i respectively denote the occurrence time and
the duration of the ith congestion event on link Vn. Given a
fixed-length historical time window T for each sample, the
traffic congestion event prediction task aims to predict the
occurrence time and duration of the next congestion event
based on the historical congestion events and traffic states.

Point Process Definition
The point process is one type of stochastic process to sim-
ulate the sequential events in a given observation time in-
terval [0, T ]. The process can be characterized by the con-
ditional intensity function λ(t|Ht), which represents the in-
tensity function of events at time point t depended on the
historical sequential events Ht up to t. The computation of
intensity function can be given as:

λ(t|Ht) = lim
∆t→0

P (one event occurs in [t, t+∆t)|Ht)

∆t
, (1)

When the conditional intensity function and the time points
{t1, t2, . . . , ti} of the historical events are given, the proba-
bility density function can be obtained as follows:

p(ti+1|t1, t2, . . . , ti) = λ(ti+1|Hti+1) exp

{
−
∫ ti+1

ti

λ(t|Ht)dt

}
,

(2)
where the exponential term in the above equation denotes the
probability that no events occur in the time interval [ti, ti+1).
In addition, we can also obtain the probability density func-
tion to observe an event sequence {ti}ni=1, which is defined
as follows:

p({ti}ni=1) =

n∏
i=1

λ(ti|Hti) exp

{
−
∫ τ

0

λ(t|Ht)dt

}
. (3)

where τ is the inter-event time that illustrates the time
interval between two different events. Many previous
related works (Du et al. 2016; Omi, Aihara et al. 2019;
Shchur, Biloš, and Günnemann 2019; Zhang et al. 2020)
directly use the inter-event time as the basic feature of each
event. Note that, the most crucial part of the point process
is the intensity function, which is difficult to characterize
in real-world applications. Hence, neural networks can be a
fruitful tool to approximate it.

Our Model
The overview of our proposed model STGNPP is illustrated
in Fig. 2. The initial input data contains four parts: road net-
work, historical traffic states, spatio-temporal indexes and
congestion event information. The road network and histor-
ical traffic states are fed into spatio-temporal graph learn-
ing module to obtain the spatio-temporal hidden represen-
tation. The contextual link representation can be extracted
from spatio-temporal hidden representation according to the

spatio-temporal indexes. And then we integrate the contex-
tual link representation and congestion event information for
congestion event learning module. Finally, our model out-
puts the occurrence time and duration of the next congestion
at the same time.

Figure 2: The overview of STGNPP

Figure 3: The detailed architecture of the spatio-temporal
graph learning module. (a) is the link-wise Transformer
layer to capture the long-range temporal dependencies. (b)
is the graph convolution layer to further extract the spatial
dependencies. (c) is the spatio-temporal inquirer that can
select the corresponding hidden representations according
to the spatio-temporal indexes. The spatio-temporal indexes
characterize when and where the historical traffic congestion
events occupied (time slots painted orange). Then we aggre-
gate the latent representations for each congestion event to
obtain the contextual link representations.

Spatio-Temporal Graph Learning Module
First, we adopt a fully connected layer to map the histori-
cal traffic states into high-dimensional representation Z ∈
RN×T×D. N , T and D represent the number of links, the
length of time window and hidden dimension respectively.
The detail architecture of the spatio-temporal graph learning
module is illustrated in Fig. 3.

Link-Wise Transformer Layer Since we need larger
time window to include more historical congestion events,
we have to learn the long-range temporal dependencies
of the traffic states. Compared with temporal convolution
networks (Yu and Koltun 2016) and recurrent neural net-
works (Cho et al. 2014; Hochreiter and Schmidhuber 1997),



Transformer (Vaswani et al. 2017) is a more powerful archi-
tecture to capture the long-range dependencies. The frame-
work of link-wise Transformer layer adopted in our model
is illustrated in Figure 3(a). Note that, the Transformer layer
is weight-sharing for different links. To characterize the se-
quential relations more explicitly, We employ trigonometric
functions-based position encoding method (Vaswani et al.
2017) in this case. The core architecture in the Transformer
layer is the self-attention network. We pass the input data
into it and compute the attention output by:

S = MD(SoftMax(
Q ·KT

√
D

) · V ), (4)

Q = WQ · Z, K = WK · Z, V = WV · Z, (5)
where Q, K and V respectively denote the query, key,
and value matrices obtained by three linear transformations
WQ.WK ,WV ∈ RD×D, where D denotes the dimension
of the self-attention network. Q · KT ∈ RN×T×T denotes
the dot product over the T dimension. MD represents the
mask operation that sets the value of the upper triangle of
the attention matrix to 0. This can prevent information of
future time steps from being exploited by past time steps.
To stabilize the fitting capability of self-attention network,
we also employ the multi-head attention mechanism, sim-
ilar to (Vaswani et al. 2017). Then we pass the attention
output into the two-layer position-wise feed-forward neural
network, generating the sequential hidden representation of
each time snapshot:

H = WF2 · (ReLU(WF1 · S + bF1)) + bF2, (6)
h(ti) = H(:, i, :), (7)

where WF1 ∈ RD×D, WF2 ∈ RD×D, bF1 ∈ RD and
bF2 ∈ RD are learnable parameters of the two-layer feed-
forward neural network. H ∈ RN×T×D is the output of the
Transformer layer and h(ti) ∈ RN×D is the hidden repre-
sentation at time snapshot ti.

Graph Convolution Layer In addition to the temporal de-
pendencies of each link, adjacent links may influence each
other, thus we employ the graph convolution layer to cap-
ture the spatial dependencies. In this case, we involve the
adaptive learnable matrices to characterize the spatial rela-
tions that cannot be represented by the predefined adjacency
matrix. And we adopt the simple graph convolution oper-
ation (Kipf and Welling 2017) with mix-hop aggregation,
which is defined as follows:

Â = A+ SoftMax(ReLU(α1α̇
T
2 )), (8)

Hi = σ(Â ·Hi−1 ·Θi), (9)
Hg = SumPooling(H1, H2, . . . ,Hi), (10)

where A is the normalized predefined adjacency matrix,
α1, α2 ∈ RN×D′

(D′ << N) are two learnable matrices
to adaptively characterize the latent spatial relations through
the back propagation process, Θi is the learnable weight for
each convolution layer, Hi ∈ RN×T×d is the output from
each layer of GCN. Note that, the initial input of the GCN
layer, H0 ∈ RN×T×D is the hidden states from Transformer
layer and Hg ∈ RN×T×D is the output of the sum pooling
operation from multi-hop hidden states.

Spatio-temporal Inquirer After obtaining the spatio-
temporal graph hidden representations from the Transformer
layer and graph convolution layer, in order to charac-
terize the latent features of congestion events, we select
the corresponding hidden representations according to the
spatio-temporal indexes, as shown in Fig. 3(c). Each spatio-
temporal index contains two elements vn and ts. Specifi-
cally, vn denotes the index of target link and ts denotes the
collection of relative time periods of the congestion event in
the historical time window [0, T ]. From these indexes, we
can easily obtain the corresponding hidden representations,
named contextual link representations, which is defined as:

ts = [ti, ti+1, . . . , ti+Ls
], ti+Ls

< T,

Hc = ∥N [PAD(∥Le [AGG(Hg(vn, ts, :))])]. (11)

where Hg(vn, ts, :) ∈ RLs×D denotes the latent represen-
tations of one congestion event on link vn, Ls is the num-
ber of time slots occupied by one congestion event and Ls

varies for different congestion events. AGG(·) denotes the
aggregation function on the dimension Ls and we use the
simple sum function in this case. ∥Le denotes the concen-
trate operation for the congestion event sequences on each
link. Note that, for different links, the lengths of congestion
event sequences Le are different, thus we need to adopt the
zero padding operation PAD(·) to ensure that the sequences
are of equal length Lmax. ∥N denotes the concentration for
the latent representations on different links and the size of
output Hc is N × Lmax ×D.

Congestion Event Learning Module
From the spatio-temporal learning module, we can obtain
the contextual link representation Hc for sequential conges-
tion events. Therefore, we define the congestion event rep-
resentation as follows:

He = We · [Hc, de] + be, (12)

where de ∈ RN×Lmax×1 denotes the historical dura-
tion of each congestion event after zero padding, He ∈
RN×Lmax×D is the output representation.

Figure 4: The detailed structure of the continuous GRU layer
in our model. The green squares denote the moment when
the congestion event occurred. The green curves and arrows
represent continuous and instantaneous changes in the hid-
den representation of link states, which are learned by GRU-
flow and discrete GRU, respectively. The grey strip denotes
the input contextual information at each time step.



Continuous GRU Layer Different from some other sce-
narios such as StackOverflow, 911 Calls and Electrical Med-
ical Records in previous related works (Du et al. 2016; Zuo
et al. 2020; Xiao et al. 2019), the congestion event pre-
diction task is more special: the traffic state for each link
is a combination of continuous changes and instantaneous
changes. Hence, it is necessary to take these two situa-
tions into account. Some continuous system modeling meth-
ods are introduced in previous works such as continuous
LSTM (Mei and Eisner 2017), neural ODE (Chen et al.
2018), RNN-ODE (Rubanova, Chen, and Duvenaud 2019)
and GRU-ODE (Brouwer et al. 2019). However, these tra-
ditional methods especially the ODE-based models suffered
from huge computational overhead, which could be a serious
problems for real-world applications. Motivated by a recent
work (Biloš et al. 2021), we can replace the ODE operations
by a more efficient architecture, neural flows, which is de-
fined as:

F (t, x) = x+ ϕ(t) · Γ(t, x), (13)

where ϕ(t) is a continuous function that satisfies two prop-
erties: i) ϕ(0) = 0 and ii) |ϕ(t)| < 1, Γ(t, x) is an arbitrary
contractive neural network. In this case, we choose Tanh,
the simplest function for ϕ(t). This architecture can transfer
the residual connection to the continuous one and reduce the
computational overhead brought by ODESolver. Inspired by
GRU-ODE (Brouwer et al. 2019), the normal GRU Cell can
be converted to the continuous type. The equations of nor-
mal GRU are defined as:

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz), (14)
gt = tanh(Whxt + Uh(rt ⊙ ht−1) + bh),

ht = zt ⊙ ht−1 + (1− zt)⊙ gt,

From the above equations, we can derive its differential
form:

∆ht = ht − ht−1 = (1− zt)⊙ (gt − ht−1), (15)

Hence, we propose to combine the differential form of GRU
with neural flows, named GRU-flow. We obtain the contin-
uous GRU cell to characterize the hidden state between two
adjacent time steps in our model as follows:

F (τi, h
l
i) = hl

i + ϕ(Wτ · τi) · (1− z([τi, h
l
i]))

⊙(g([τi, h
l
i])− hl

i), (16)

where τi is the inter-event time at each step, Wτ ∈ R1×D is
a transformation weight to ensure dimensional consistency,
hl
i denotes the lth layer’s hidden state at each step, [·] denotes

the concentrate operation. The initial input of the continuous
GRU cell is the event embedding at step i. For capturing the
instantaneous dynamics, we directly adopt the discrete GRU
cell, which is as follows:

h0
i+1 = GRUCell(He[i+ 1, :], F (τi, h

l
i)), (17)

where GRUCell(·) denotes the discrete GRU cell. The two
input elements of discrete GRU cell are respectively the hid-
den state from the GRU-flow F (τi, h

l
i) and the contextual

link representation He[i + 1, :] at the next time step. The
output of the discrete GRU cell can be treated as the initial
input for the GRU-flow at the next time step. The detailed
structure of our continuous GRU Layer is show in Fig. 4 and
the hidden states from the discrete GRU cell are fed into the
intensity function network.

Intensity Function Network To approximate the distribu-
tion of inter-event time, many traditional models (Du et al.
2016; Zuo et al. 2020) optimized the logarithmic form of the
probability density function in eq. (3), called log-likelihood
function, which is defined as:

logL({τ}) =
∑
i

[
log λ(τ |hi)−

∫ τ

0

λ(τ |hi)dτ

]
. (18)

where τ denotes the inter-event time, hi denotes the event
hidden state at ith step. However, the integral term can
only be approximated by interpolation or Monte Carlo
method (Zuo et al. 2020). To address this problem, the cu-
mulative intensity function is introduced to reformulate the
log-likelihood function and the intensity function is com-
puted by a multi-layer fully connected network. Since the
congestion frequency could vary by peak hours or non-peak
hours, as discussed in the introduction section, the intensity
function could be impacted by the periodic patterns. To char-
acterize the effect of periodic patterns, we first propose a pe-
riodic gated unit to adjust the intensity function. The mathe-
matical form can be defined as the basic intensity term mul-
tiplied by the periodic gate term, which is as follows:

logL({ti}) =
∑
i

[
log

{
∂

∂τ
λ(τ = ti+1 − ti|hi)

}
− λ(τ |hi)

]
,

λ(τ |hi) = f+
l ([hi, τ ])⊙ σ(fp([P

d
i , P

w
i ])). (19)

where f+
l (·) denotes the fully connected layer for comput-

ing the basic intensity function, fp(·) denotes the fully con-
nected layer for periodic gated unit, P d

i , P
w
i respectively de-

note the time of day and the day of week of the ith event.

Optimization and Prediction
As a multi-task learning framework, our model simultane-
ously optimizes the negative log-likelihood of the probabil-
ity density function of the inter-event time and the absolute
error of the duration prediction during the training phase:

L =
∑
i

[
λ(τ |hi)− log

{
∂

∂τ
λ(τ |hi)

}]
+ α∥fd(hi)− di+1∥,

(20)
where fd(·) denotes the fully connected layer for duration
prediction of the next traffic congestion, α denotes the trade-
off ratio. We set α as 1 by default.

During the inference phase, the duration prediction of the
next congestion can be obtained directly by the output of
fd(·). For the occurrence time of the next congestion event,
our model can also efficiently generate the prediction in the
following way. Given the historical congestion event oc-
curred at time point {t1, t2, . . . , ti}, the predictive probabil-
ity density function p∗(t|t1, t2, . . . , ti) of the time point ti+1

of the next congestion event is calculated from eq. (2). In this
case, we utilize the median time point t∗i+1 of the probabil-
ity density distribution p∗ to estimate ti+1. Since the integral



of the intensity function over [ti, ti+1] follows the exponen-
tial distribution with mean 1, derived by directly integrating
eq. (2), we use the median relation of the exponential dis-
tribution, λ(t∗i+1 − ti|hi) = log(2), to estimate t∗i+1. Fur-
ther, we can adopt the bisection method to efficiently obtain
t∗i+1. Given the interval [Tmin, Tmax], if the intensity func-
tion λ(τ |hi) is less than log(2), then we reassign the lower
bound as Tmin = (Tmin + Tmax)/2. In contrast, if λ(τ |hi)
is greater than log(2), then we reassign the upper bound as
Tmax = (Tmin+Tmax)/2. Through such multiple rounds of
loop calculation, we will get a relatively accurate prediction
t∗i+1 = (Tmin + Tmax)/2.

Experiments
Datasets and Settings
We evaluate our model on Beijing dataset and Chengdu
dataset which are collected from the mobile application
databases, as shown in Table 1. Each dataset is chronolog-
ically split with 60% for training, 20% for validation and
20% for testing. We utilize the traffic states, congestion
event information and spatio-temporal indexes in the last six
hours to predict the occurrence time and duration of the next
congestion event. Note that, we only employ the link speed
data with condition labels as traffic states data. The con-
dition label is a binary variable that describes whether the
road is congested or not for each time slot. And the conges-
tion events are also collected based on the condition labels.
Congestion event information includes inter-event times, du-
ration and periodic features. Our model is implemented by
Pytorch 1.5 with NVIDIA TESLA V100 GPU. We set the
number of stacks of Transformer and GCN as 2, the number
of self-attention heads as 4 in Transformer layer, the num-
ber of GCN layers as 2 and the number of flow layers in
continuous GRU as 2 by default. The dimension of hidden
representations in our model is set as 64 and the dimension
of random matrix for adaptive graph is set as 10. We set the
optimizer as Adam with learning rate 0.001 and the batch
size as 16. During the training phase, we employ the early
stopping strategy with tolerance 20 for 100 epochs. During
the inference phase, we set the lower bound and the upper
bound of the time interval as 0 and 360 (min) respectively.

Table 1: Dataset description and statistics.
Datasets #links #Congestion Events Time Range Time Slot
Beijing 573 249464 5/12/2021 - 11/12/2021 5min

Chengdu 435 204768 5/12/2021 - 11/12/2021 5min

Overall Performance
We compare our model with ten state-of-art baselines, which
can be divided into three categories. Simple models: His-
torical Average (HA), Gradient Boosting Decision Tree
(GBDT) (Ye et al. 2009) and GRU (Cho et al. 2014). Spatio-
temporal graph-based models: DCRNN (Li et al. 2018),
Graph WaveNet (Wu et al. 2019) and STGODE (Fang et al.
2021). Neural point process-based models: NHTPP (Mei
and Eisner 2017), RMTPP (Du et al. 2016), THPP (Zuo et al.
2020) and FNN-TPP (Omi, Aihara et al. 2019). For the sim-
ple models, we only use the traffic congestion event infor-

mation as the input features to directly predict the next con-
gestion events. For the spatio-temporal graph-based mod-
els, similar to most traffic flow prediction tasks, we employ
the core architectures of spatio-temporal graph networks for
spatio-temporal representation learning and predict the link
condition labels in the next six hours (the six-hour time win-
dow is long enough to guarantee coverage of next conges-
tion events). And then we can obtain the occurrence time
and duration of the next traffic congestion event for each link
according to the predicted link condition labels in the future
time window. For neural point process-based models, we use
congestion event information for point process modeling to
predict the next congestion events.

The evaluation metrics are mean absolute errors (MAE),
mean absolute percentage errors (MAPE) and negative log-
likelihood (NLL). Note that, we use NLL, MAE and MAPE
to evaluate the prediction of occurrence time. For the pre-
diction of duration, we only use MAE and MAPE. In subse-
quent experiments, MAE-t and MAPE-t denote the metrics
for occurrence time while MAE-d and MAPE-d denote the
metrics for duration. From the results in Table 2, we can
observe that our model STGNPP consistently outperforms
the sub-optimal baselines with around 10% improvements
in terms of all metrics on the two datasets, which demon-
strates the superiority of our proposed method. From the
experimental results, both of spatio-temporal graph-based
baselines and neural point process-based baselines are sig-
nificantly stronger than simple baselines. This is because the
simple baselines can neither model inter-event dependencies
nor capture spatio-temporal hidden information. The spatio-
temporal graph-based baselines can fully exploit spatio-
temporal information but neglect to model the congestion
events, while neural point process-based baselines are the
opposite. By contrast, our proposed model can not only fully
exploit traffic-related spatio-temporal dependencies, but also
model the sequence of congestion events, thereby outper-
forming other methods with a large margin.

Ablation Study
We conduct ablation study on both of the two datasets to
evaluate the effectiveness of each crucial module in our
model. As shown in Table 3, we compared STGNPP with
following ablation variants: 1) GWNPP, which replaces the
spatio-temporal graph learning module in our model with
that in Graph WaveNet 2) w/o GCN, which removes all the
GCN layers from our models 3) w/o Trans, which removes
the Transformer layers from our model. 4) w/o GRU, which
replaces the continuous GRU with the fully connected net-
works. 5) w/o continuous, which replaces the continuous
GRU with the discrete GRU. 6) w/o Gated, which removes
the periodic gated unit from the intensity function networks.

From Table 3, we can find that our complete model
STGNPP outperforms all the ablation variants. Since Graph
WaveNet is a recognized excellent model in traffic predic-
tion, the superiority of our model to GWNPP suggests that
Transformer can capture long-term dependencies better than
temporal convolutions in traffic congestion prediction sce-
narios. Our model significantly outperforms w/o GCN and
w/o Trans can demonstrate that capturing either spatial and



Table 2: Performance comparison of baseline models and STGNPP. We run all machine learning algorithms five times with
different random seeds and calculated the mean and standard deviation. Note that, only our model and neural point process-
based models need to compute NLL and the sub-optimal results are marked by the asterisk.

Beijing Chengdu
Method NLL MAPE-t(%) MAE-t(min) MAPE-d(%) MAE-d(min) NLL MAPE-t(%) MAE-t(min) MAPE-d(%) MAE-d(min)

HA / 48.87 25.45 54.62 18.70 / 63.41 36.35 62.71 42.67
GBDT / 42.63 ± 1.12 23.81 ± 0.56 33.60 ± 0.83 16.21 ± 0.25 / 52.78 ± 1.32 32.39 ± 0.72 34.87 ± 0.51 38.13 ± 0.63
GRU / 41.37 ± 1.24 23.18 ± 0.67 31.88 ± 0.92 15.75 ± 0.34 / 44.84 ± 1.58 30.67 ± 0.69 33.18 ± 0.57 37.45 ± 0.68

DCRNN / 38.43 ± 1.07 19.36 ± 0.52 26.85 ± 0.62 14.63 ± 0.28 / 42.51 ± 1.24 27.76 ± 0.55 31.92 ± 0.48 35.75 ± 0.53
Graph WaveNet / 37.82 ± 0.32 19.01 ± 0.16 26.39 ± 0.25 14.46 ± 0.10 / 41.89 ± 0.91 27.48 ± 0.22 31.81 ± 0.13 35.79 ± 0.16

STGODE / 38.75 ± 0.73 19.68 ± 0.32 26.51 ± 0.41 14.55 ± 0.27 / 43.05 ± 1.02 28.27 ± 0.34 32.03 ± 0.25 36.69 ± 0.29
NHTPP 5.84 ± 0.04 38.86 ± 0.14 19.17 ± 0.11 26.29 ± 0.20 14.47 ± 0.11 5.90 ± 0.06 42.73 ± 0.65 28.10 ± 0.21 32.07 ± 0.17 36.59 ± 0.15
RMTPP 6.02 ± 0.07 38.72 ± 0.18 19.64 ± 0.13 27.31 ± 0.19 14.52 ± 0.09 6.18 ± 0.06 42.89 ± 0.59 28.65 ± 0.23 32.16 ± 0.15 36.45 ± 0.17
THPP 5.75 ± 0.04 38.16 ± 0.12 19.27 ± 0.14 25.83* ± 0.16 14.38* ± 0.11 5.94 ± 0.05 42.76 ± 0.41 28.39 ± 0.20 31.78 ± 0.12 35.86 ± 0.13

FNN-TPP 5.46* ± 0.05 37.54* ± 0.09 18.86* ± 0.11 26.72 ± 0.13 14.41 ± 0.08 5.68* ± 0.04 41.38* ± 0.37 27.13* ± 0.14 31.82* ± 0.08 35.75* ± 0.06
STGNPP (ours) 4.87 ± 0.03 34.16 ± 0.05 16.95 ± 0.08 24.02 ± 0.10 13.15 ± 0.05 5.02 ± 0.02 37.54 ± 0.21 24.52 ± 0.10 29.83 ± 0.06 32.94 ± 0.08

Table 3: Ablation experiments.
Dataset Model&Variants NLL MAPE-t(%) MAE-t MAPE-d(%) MAE-d

Beijing

STGNPP 4.87 34.16 16.95 24.02 13.15
GWNPP 4.98 35.48 17.12 24.31 13.43
w/o GCN 5.06 36.08 18.17 24.83 13.92
w/o Trans 5.17 36.46 18.45 25.01 14.10
w/o GRU 5.43 36.95 18.68 24.97 14.32
w/o Continous 5.01 36.12 18.38 24.75 13.94
w/o Gated 5.05 36.28 18.29 24.31 13.89

Chengdu

STGNPP 5.02 37.54 24.52 29.83 32.94
GWNPP 5.11 38.23 24.91 30.28 33.36
w/o GCN 5.36 39.30 26.34 31.86 35.43
w/o Trans 5.58 39.82 27.10 31.76 35.62
w/o GRU 5.73 40.16 27.89 32.12 35.81
w/o Continous 5.24 39.13 27.65 31.79 34.97
w/o Gated 5.18 38.96 26.11 32.06 34.95

temporal dependencies of traffic states in road networks can
be beneficial for congestion event prediction. The variant
w/o GRU can illustrate that the continuous GRU layer can
capture the contextual correlations in historical congestion
event sequences for more accurate prediction. To further in-
vestigate the effectiveness of continuous modeling of GRU
flow architectures, we compare STGNPP with w/o contin-
uous. The results indicate that either the instantaneous dy-
namics or the continuous dynamics of the contextual link
representations have a non-negligible effect on the predic-
tion of traffic congestion event. We also compare our model
with the w/o gated to investigate the effectiveness of peri-
odic gated unit in intensity function network. The compar-
ison results reflect the importance of involving periodic in-
formation into intensity function.

Figure 5: Studies on hyper-parameters.

Parameters Study
Since some parameters could significantly affect the learn-
ing capability, we conduct parameter study to further inves-
tigate the effectiveness of our model. We select the num-
ber of GCN layers lg and the number of flow layers lf in
continuous GRU, because lg is critical for the spatial depen-
dencies learning and lf is critical for modeling the contin-
uous sequential congestion events. The experimental results
are shown in Fig. 5. We can find that the best setting for
lg is 3 for the two datasets. When lg increases, the NLL
of Beijing and duration MAE of the two datasets become

worse. The reason may be that the over-smoothing problem
of GCNs limits the improvement of performance. For lf , the
best value for the two datasets is also 3. With the increase
of lf , the NLL of Chengdu and duration MAE of the two
datasets become worse. This is because too many layers for
continuous GRU could cause the over-fitting problem.

Figure 6: Visualization of the learned intensity functions at-
tached to prediction curves on two datasets.

Case Study
To further investigate how our model characterizes the tim-
ing features by the learned intensity function, we visualize
the curves of intensity functions (green lines), the predicted
inter-event times (red lines) and the ground truths (blue
lines) of the most congested link on the May 12, 2021 for the
two datasets respectively. As shown in Fig. 6, we can find
that the peaks and troughs of the intensity function curves
are opposite to the peaks and troughs of the ground truths
and prediction curves. This means the learned intensity func-
tions can characterize the trends of traffic congestion event:
The larger the value of intensity function, the greater the
probability of congestion occurrence, so the smaller the time
interval between two different congestion events.

Conclusion
We propose a novel spatio-temporal graph neural point pro-
cess framework for traffic congestion event prediction. In
this paper, we give a first attempt to utilize the spatio-
temporal graph to incorporate with neural point process for
traffic congestion event modeling and we also take account
into some important traffic-related characteristics such as
periodic features, continuous and instantaneous dynamics,
to improve the inter-event dependencies learning. We con-
duct extensive experiments on two large-scale real-world
datasets and the experimental results demonstrate the superi-
ority of our model compared with other traditional methods.
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